RNA: Relightable Neural Assets

Author:

Mullia Krishna1ORCID,Luan Fujun2ORCID,Sun Xin2ORCID,Hašan Miloš2ORCID

Affiliation:

1. Adobe Research, Adobe Inc, San Francisco, United States

2. Adobe Research, Adobe Inc, San Jose, United States

Abstract

High-fidelity 3D assets with materials composed of fibers (including hair), complex layered material shaders, or fine scattering geometry are critical in high-end realistic rendering applications. Rendering such models is computationally expensive due to heavy shaders and long scattering paths. Moreover, implementing the shading and scattering models is non-trivial and has to be done not only in the 3D content authoring software (which is necessarily complex), but also in all downstream rendering solutions. For example, web and mobile viewers for complex 3D assets are desirable, but frequently cannot support the full shading complexity allowed by the authoring application. Our goal is to design a neural representation for 3D assets with complex shading that supports full relightability and full integration into existing renderers. We provide an end-to-end shading solution at the first intersection of a ray with the underlying geometry. All shading and scattering is precomputed and included in the neural asset; no multiple scattering paths need to be traced, and no complex shading models need to be implemented to render our assets, beyond a single neural architecture. We combine an MLP decoder with a feature grid. Shading consists of querying a feature vector, followed by an MLP evaluation producing the final reflectance value. Our method provides high-fidelity shading, close to the ground-truth Monte Carlo estimate even at close-up views. We believe our neural assets could be used in practical renderers, providing significant speed-ups and simplifying renderer implementations.

Publisher

Association for Computing Machinery (ACM)

Reference66 articles.

1. Differentiable Rendering of Neural SDFs through Reparameterization

2. Efficient rendering of layered materials using an atomic decomposition with statistical operators;Belcour Laurent;ACM Transactions on Graphics,2018

3. A precomputed polynomial representation for interactive BRDF editing with global illumination

4. Sai Bi, Zexiang Xu, Pratul P. Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Milos Hasan, Yannick Hold-Geoffroy, David J. Kriegman, and Ravi Ramamoorthi. 2020. Neural Reflectance Fields for Appearance Acquisition. abs/2008.03824 (2020). arXiv:2008.03824 https://arxiv.org/abs/2008.03824

5. NeRD: Neural Reflectance Decomposition from Image Collections

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3