Minimal placement of bank selection instructions for partitioned memory architectures

Author:

Scholz Bernhard1,Burgstaller Bernd2,Xue Jingling3

Affiliation:

1. The University of Sydney, Sydney, Australia

2. Yonsei University, Seoul, Korea

3. University of New South Wales, Sydney, Australia

Abstract

We have devised an algorithm for minimal placement of bank selections in partitioned memory architectures. This algorithm is parameterizable for a chosen metric, such as speed, space, or energy. Bank switching is a technique that increases the code and data memory in microcontrollers without extending the address buses. Given a program in which variables have been assigned to data banks, we present a novel optimization technique that minimizes the overhead of bank switching through cost-effective placement of bank selection instructions. The placement is controlled by a number of different objectives, such as runtime, low power, small code size or a combination of these parameters. We have formulated the minimal placement of bank selection instructions as a discrete optimization problem that is mapped to a partitioned boolean quadratic programming (PBQP) problem. We implemented the optimization as part of a PIC Microchip backend and evaluated the approach for several optimization objectives. Our benchmark suite comprises programs from MiBench and DSPStone plus a microcontroller real-time kernel and drivers for microcontroller hardware devices. Our optimization achieved a reduction in program memory space of between 2.7 and 18.2%, and an overall improvement with respect to instruction cycles between 5.0 and 28.8%. Our optimization achieved the minimal solution for all benchmark programs. We investigated the scalability of our approach toward the requirements of future generations of microcontrollers. This study was conducted as a worst-case analysis on the entire MiBench suite. Our results show that our optimization (1) scales well to larger numbers of memory banks, (2) scales well to the larger problem sizes that will become feasible with future microcontrollers, and (3) achieves minimal placement for more than 72% of all functions from MiBench.

Funder

University of Sydney

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference37 articles.

1. Scratchpad memory

2. Fast memory bank assignment for fixed-point digital signal processors

3. Dattalo T. S. 2006. The Gpsim SW simulator for PIC microcontrollers. http://www.dattalo.com/gnupic/gpsim.html. Dattalo T. S. 2006. The Gpsim SW simulator for PIC microcontrollers. http://www.dattalo.com/gnupic/gpsim.html.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3