Design and Implementation of BCI-based Intelligent Upper Limb Rehabilitation Robot System

Author:

Kim Tae-Yeun1ORCID,Kim Sung-Hwan1ORCID,Ko Hoon2ORCID

Affiliation:

1. National Program of Excellence in Software center, Chosun University, Gwangju, Republic of Korea

2. IT Research Institute, Chosun University, Gwangju, Republic of Korea

Abstract

The present study aimed to use the proposed system to measure and analyze brain waves of users to allow intelligent upper limb rehabilitation and to optimize the system using a genetic algorithm. The study used EPOC Neuroheadset for Emotiv with EEG electrodes attached as a non-invasive method for measuring brain waves. The brain waves were measured according to the EEG 10-20 standard electrode layout, which allows measurement of signals from each spot where electrodes are attached based on EEG characteristics. The measured data were added in a database. In the intelligent neuro-fuzzy model, wave transform was used for extracting brain wave characteristics according to user intentions and to eliminate noise from the signals in an effort to increase reliability. Moreover, to construct the option rules of the neuro-fuzzy system, FCM technique and optimal cluster evaluation method were used. Furthermore, the asymmetric Gaussian membership function was used to improve performance, whereas SD and WF divided into left and right sides were used to express the chromosomes. Optimal EEG electrode locations were found, and comparative analysis was performed on the differences based on membership function, number of clusters, and number of learning generations, learning algorithm, and wavelet settings. The performance evaluation results showed that the optimal EEG electrode locations were F7, F8, FC5, and FC6, whereas the accuracy of learning and test data of user-intention recognition was found to be 94.2% and 92.3%, respectively, which suggests that the proposed system can be used to recognize user intention for specific behavior. The system proposed in the present study can allow continued rehabilitation exercise in everyday living according to user intentions, which is expected to help improve the user's willingness to participate in rehabilitation and his or her quality of life.

Funder

National Research Foundation of Korea

Korea government

Basic Science Research Program through the National Research Foundation of Korea

Ministry of Education

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference22 articles.

1. Analysis of physiological bio-signal database construction status and for biometrics;Han Y. H.;J. Inf. Technol. Appl. Eng.,2018

2. Development of efficient encryption scheme on brain-waves using five phase chaos maps;Kim J. S.;Int. J. Fuzzy Log. Intell. Syst.,2016

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3