Graph Indexing for Efficient Evaluation of Label-constrained Reachability Queries

Author:

Chen Yangjun1,Singh Gagandeep1

Affiliation:

1. Dept. Applied Computer Science, University of Winnipeg, Canada

Abstract

Given a directed edge labeled graph G , to check whether vertex v is reachable from vertex u under a label set S is to know if there is a path from u to v whose edge labels across the path are a subset of S . Such a query is referred to as a label-constrained reachability ( LCR ) query. In this article, we present a new approach to store a compressed transitive closure of G in the form of intervals over spanning trees (forests). The basic idea is to associate each vertex v with two sequences of some other vertices: one is used to check reachability from v to any other vertex, by using intervals, while the other is used to check reachability to v from any other vertex. We will show that such sequences are in general much shorter than the number of vertices in G. Extensive experiments have been conducted, which demonstrates that our method is much better than all the previous methods for this problem in all the important aspects, including index construction times, index sizes, and query times.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference68 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A wave delay neural network for solving label-constrained shortest route query on time-varying communication networks;PeerJ Computer Science;2024-06-12

2. Label Constrained Reachability Queries on Time Dependent Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Querying Numeric-Constrained Shortest Distances on Road Networks;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Cost-Effective Resources for Computing Approximation Queries in Mobile Cloud Computing Infrastructure;Sensors;2023-08-25

5. An Overview of Reachability Indexes on Graphs;Companion of the 2023 International Conference on Management of Data;2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3