RecRules

Author:

Corno Fulvio1ORCID,De Russis Luigi1ORCID,Monge Roffarello Alberto1ORCID

Affiliation:

1. Politecnico di Torino, Torino, Italy

Abstract

Nowadays, end users can personalize their smart devices and web applications by defining or reusing IF-THEN rules through dedicated End-User Development (EUD) tools. Despite apparent simplicity, such tools present their own set of issues. The emerging and increasing complexity of the Internet of Things, for example, is barely taken into account, and the number of possible combinations between triggers and actions of different smart devices and web applications is continuously growing. Such a large design space makes end-user personalization a complex task for non-programmers, and motivates the need of assisting users in easily discovering and managing rules and functionality, e.g., through recommendation techniques. In this article, we tackle the emerging problem of recommending IF-THEN rules to end users by presenting RecRules , a hybrid and semantic recommendation system. Through a mixed content and collaborative approach, the goal of RecRules is to recommend by functionality : it suggests rules based on their final purposes, thus overcoming details like manufacturers and brands. The algorithm uses a semantic reasoning process to enrich rules with semantic information, with the aim of uncovering hidden connections between rules in terms of shared functionality. Then, it builds a collaborative semantic graph, and it exploits different types of path-based features to train a learning to rank algorithm and compute top-N recommendations. We evaluate RecRules through different experiments on real user data extracted from IFTTT, one of the most popular EUD tools. Results are promising: they show the effectiveness of our approach with respect to other state-of-the-art algorithms and open the way for a new class of recommender systems for EUD that take into account the actual functionality needed by end users.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3