Blockchain-Based Digital Twins: Research Trends, Issues, and Future Challenges

Author:

Suhail Sabah1ORCID,Hussain Rasheed2ORCID,Jurdak Raja3,Oracevic Alma2,Salah Khaled4,Hong Choong Seon5,Matulevičius Raimundas1

Affiliation:

1. University of Tartu, Tartu, Estonia

2. University of Bristol, Bristol, UK

3. Queensland University of Technology, Australia

4. Khalifa University, Abu Dhabi, UAE

5. Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea

Abstract

Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, digital twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We also highlight the role of artificial intelligence in blockchain-based DTs. Furthermore, we discuss the current and future research and deployment challenges of blockchain-supported DTs that require further investigation.

Funder

European Social Fund via

Institute of Information & Communications Technology Planning & Evaluation

Korea government

Grand Information Technology Research Center

IITP

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3