Organizing matrices and matrix operations for paged memory systems

Author:

McKellar A. C.1,Coffman E. G.2

Affiliation:

1. Princeton Univ., Princeton, NJ

2. Princeton Univ., NJ

Abstract

Matrix representations and operations are examined for the purpose of minimizing the page faulting occurring in a paged memory system. It is shown that carefully designed matrix algorithms can lead to enormous savings in the number of page faults occurring when only a small part of the total matrix can be in main memory at one time. Examination of addition, multiplication, and inversion algorithms shows that a partitioned matrix representation (i.e. one submatrix or partition per page) in most cases induced fewer page faults than a row-by-row representation. The number of page-pulls required by these matrix manipulation algorithms is also studied as a function of the number of pages of main memory available to the algorithm.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference11 articles.

1. Dynamic program behavior under paging

2. Further experimental data on the behavior of programs in a paging environment

3. KEMENY J. G. AND KURTZ T.E. Basic Programming. Wiley New York 1967. KEMENY J. G. AND KURTZ T.E. Basic Programming. Wiley New York 1967.

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stencil Computation with Vector Outer Product;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30

2. Rank-Polymorphism for Shape-Guided Blocking;Proceedings of the 11th ACM SIGPLAN International Workshop on Functional High-Performance and Numerical Computing;2023-08-30

3. Reducing redundancy in data organization and arithmetic calculation for stencil computations;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2021-11-13

4. Throughput optimizations for FPGA-based deep neural network inference;Microprocessors and Microsystems;2018-07

5. Algorithmic Aspects of Parallel Query Processing;Proceedings of the 2018 International Conference on Management of Data;2018-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3