Fast Sampling and Counting k -SAT Solutions in the Local Lemma Regime

Author:

Feng Weiming1,Guo Heng2,Yin Yitong1ORCID,Zhang Chihao3

Affiliation:

1. Nanjing University, Nanjing, China

2. University of Edinburgh, Edinburgh, United Kingdom

3. Shanghai Jiao Tong University, Shanghai, China

Abstract

We give new algorithms based on Markov chains to sample and approximately count satisfying assignments to k -uniform CNF formulas where each variable appears at most d times. For any k and d satisfying kd < n o(1) and k ≥ 20 log k + 20 log d + 60, the new sampling algorithm runs in close to linear time, and the counting algorithm runs in close to quadratic time. Our approach is inspired by Moitra (JACM, 2019), which remarkably utilizes the Lovász local lemma in approximate counting. Our main technical contribution is to use the local lemma to bypass the connectivity barrier in traditional Markov chain approaches, which makes the well-developed MCMC method applicable on disconnected state spaces such as SAT solutions. The benefit of our approach is to avoid the enumeration of local structures and obtain fixed polynomial running times, even if k = ω (1) or d = ω (1).

Funder

National Key R&D Program of China

NSFC

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference33 articles.

1. Approximation via correlation decay when strong spatial mixing fails;Bezáková Ivona;SIAM J. Comput.,2019

2. Accelerating simulated annealing for the permanent and combinatorial counting problems;Bezáková Ivona;SIAM J. Comput.,2008

3. Fast algorithms at low temperatures via markov chains. In Proceedings of APPROX-RANDOM(LIPIcs, Vol. 145);Chen Zongchen;Schloss Dagstuhl-Leibniz-Zentrum für Informatik,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards derandomising Markov chain Monte Carlo;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

2. On the zeroes of hypergraph independence polynomials;Combinatorics, Probability and Computing;2023-09-21

3. Inapproximability of Counting Hypergraph Colourings;ACM Transactions on Computation Theory;2022-12-31

4. Sampling Lovász local lemma for general constraint satisfaction solutions in near-linear time;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10

5. The Transition Phenomenon of (1,0)-d-Regular (k, s)-SAT;Electronics;2022-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3