Understand users’ comprehension and preferences for composing information visualizations

Author:

Yang Huahai1,Li Yunyao1,Zhou Michelle X.1

Affiliation:

1. IBM Research-Almaden, San Jose, CA

Abstract

We are developing an automated visualization system that helps users combine two or more existing information graphics to form an integrated view. To establish empirical foundations for building such a system, we designed and conducted two studies on Amazon Mechanical Turk to understand users’ comprehension and preferences of composite visualization under different conditions (e.g., data and tasks). In Study 1, we collected more than 1,500 textual descriptions capturing about 500 participants’ insights of given information graphics, which resulted in a task-oriented taxonomy of visual insights. In Study 2, we asked 240 participants to rank composite visualizations by their suitability for acquiring a given visual insight identified in Study 1, which resulted in ranked user preferences of visual compositions for acquiring each type of insight. In this article, we report the details of our two studies and discuss the broader implications of our crowdsourced research methodology and results to HCI-driven visualization research.

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Reference88 articles.

1. Cognitive Semantics

2. Chapter 48 Race and gender in the labor market

3. R. Amar J. Eagan and J. Stasko. 2005. Low-level components of analytic activity in information visualization. In InfoVis. 10.1109/INFOVIS.2005.24 R. Amar J. Eagan and J. Stasko. 2005. Low-level components of analytic activity in information visualization. In InfoVis. 10.1109/INFOVIS.2005.24

4. Graphs in statistical analysis;Anscombe F. J.;American Statistician,1973

5. Perceptual symbol systems

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The State of Pilot Study Reporting in Crowdsourcing: A Reflection on Best Practices and Guidelines;Proceedings of the ACM on Human-Computer Interaction;2024-04-17

2. Interactivity;Natural Language Interfaces to Databases;2023-11-25

3. A Systematic Mapping Study on Accessibility in Data Visualizations for Visually Impaired Users;2023 11th International Conference in Software Engineering Research and Innovation (CONISOFT);2023-11-06

4. Can Previews Mitigate the Effect of Interruptions? Findings from a Lab Experiment under Various Workloads;International Journal of Human–Computer Interaction;2022-10-31

5. ComputableViz: Mathematical Operators as a Formalism for Visualisation Processing and Analysis;CHI Conference on Human Factors in Computing Systems;2022-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3