LLM-Ensemble: Optimal Large Language Model Ensemble Method for E-commerce Product Attribute Value Extraction

Author:

Fang Chenhao1ORCID,Li Xiaohan2ORCID,Fan Zezhong2ORCID,Xu Jianpeng2ORCID,Nag Kaushiki2ORCID,Korpeoglu Evren2ORCID,Kumar Sushant2ORCID,Achan Kannan2ORCID

Affiliation:

1. University of Wisconsin-Madison, Madison, WI, USA

2. Walmart Global Tech, Sunnyvale, CA, USA

Publisher

ACM

Reference38 articles.

1. Large language models are few-shot clinical information extractors

2. Ansel Blume, Nasser Zalmout, Heng Ji, and Xian Li. 2023. Generative Models for Product Attribute Extraction. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track. 575--585.

3. Alexander Brinkmann, Roee Shraga, and Christian Bizer. 2023. Product Attribute Value Extraction using Large Language Models. arXiv preprint arXiv:2310.12537 (2023).

4. Tom Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared D Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33 (2020) 1877--1901.

5. Jiao Chen, Luyi Ma, Xiaohan Li, Nikhil Thakurdesai, Jianpeng Xu, Jason HD Cho, Kaushiki Nag, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. 2023. Knowledge Graph Completion Models are Few-shot Learners: An Empirical Study of Relation Labeling in E-commerce with LLMs. arXiv preprint arXiv:2305.09858 (2023).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relation labeling in product knowledge graphs with large language models for e-commerce;International Journal of Machine Learning and Cybernetics;2024-08-15

2. Using LLMs for the Extraction and Normalization of Product Attribute Values;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3