Cross-Modality Retrieval by Joint Correlation Learning

Author:

Wang ShuoORCID,Guo DanORCID,Xu XinORCID,Zhuo Li,Wang MengORCID

Abstract

As an indispensable process of cross-media analyzing, comprehending heterogeneous data faces challenges in the fields of visual question answering (VQA), visual captioning, and cross-modality retrieval. Bridging the semantic gap between the two modalities is still difficult. In this article, to address the problem in cross-modality retrieval, we propose a cross-modal learning model with joint correlative calculation learning. First, an auto-encoder is used to embed the visual features by minimizing the error of feature reconstruction and a multi-layer perceptron (MLP) is utilized to model the textual features embedding. Then we design a joint loss function to optimize both the intra- and the inter-correlations among the image-sentence pairs, i.e., the reconstruction loss of visual features, the relevant similarity loss of paired samples, and the triplet relation loss between positive and negative examples. In the proposed method, we optimize the joint loss based on a batch score matrix and utilize all mutual mismatched paired samples to enhance its performance. Our experiments in the retrieval tasks demonstrate the effectiveness of the proposed method. It achieves comparable performance to the state-of-the-art on three benchmarks, i.e., Flickr8k, Flickr30k, and MS-COCO.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pseudo Content Hallucination for Unpaired Image Captioning;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

2. Semantic-based Selection, Synthesis, and Supervision for Few-shot Learning;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

3. Cross-modality Multiple Relations Learning for Knowledge-based Visual Question Answering;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-10-23

4. Transformer-Based Visual Grounding with Cross-Modality Interaction;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-05-30

5. NumCap: A Number-controlled Multi-caption Image Captioning Network;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3