Data-driven visual similarity for cross-domain image matching

Author:

Shrivastava Abhinav1,Malisiewicz Tomasz2,Gupta Abhinav1,Efros Alexei A.1

Affiliation:

1. Carnegie Mellon University

2. MIT

Abstract

The goal of this work is to findvisually similarimages even if they appear quite different at the raw pixel level. This task is particularly important for matching images across visual domains, such as photos taken over different seasons or lighting conditions, paintings, hand-drawn sketches, etc. We propose a surprisingly simple method that estimates the relative importance of different features in a query image based on the notion of "data-driven uniqueness". We employ standard tools from discriminative object detection in a novel way, yielding a generic approach that does not depend on a particular image representation or a specific visual domain. Our approach shows good performance on a number of difficult cross-domain visual tasks e.g., matching paintings or sketches to real photographs. The method also allows us to demonstrate novel applications such asInternet re-photography, and painting2gps. While at present the technique is too computationally intensive to be practical for interactive image retrieval, we hope that some of the ideas will eventually become applicable to that domain as well.

Funder

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference40 articles.

1. Computational rephotography

2. Baeza-Yates R. A. and Ribeiro-Neto B. 1999. Modern Information Retrieval. Addison-Wesley Longman Publishing. Baeza-Yates R. A. and Ribeiro-Neto B. 1999. Modern Information Retrieval . Addison-Wesley Longman Publishing.

3. Boiman O. and Irani M. 2007. Detecting irregularities in images and in video. In IJCV. 10.1007/s11263-006-0009-9 Boiman O. and Irani M. 2007. Detecting irregularities in images and in video. In IJCV . 10.1007/s11263-006-0009-9

4. Buades A. Coll B. and Morel J.-M. 2005. A non-local algorithm for image denoising. In CVPR. 10.1109/CVPR.2005.38 Buades A. Coll B. and Morel J.-M. 2005. A non-local algorithm for image denoising. In CVPR . 10.1109/CVPR.2005.38

5. Chang C.-C. and Lin C.-J. 2011. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology. 10.1145/1961189.1961199 Chang C.-C. and Lin C.-J. 2011. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology . 10.1145/1961189.1961199

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3