Affiliation:
1. University of Padova, Padova, Italy
2. Worldsensing, Bellaterra, Spain
3. Worldsensing, Barcelona, Spain
Abstract
Lossy temporal compression is key for energy-constrained wireless sensor networks (WSNs), where the imperfect reconstruction of the signal is often acceptable at the data collector, subject to some maximum error tolerance. In this article, we evaluate a number of selected lossy compression methods from the literature and extensively analyze their performance in terms of compression efficiency, computational complexity, and energy consumption. Specifically, we first carry out a performance evaluation of existing and new compression schemes, considering linear, autoregressive, FFT-/DCT- and wavelet-based models , by looking at their performance as a function of relevant signal statistics. Second, we obtain formulas through numerical fittings to gauge their overall energy consumption and signal representation accuracy. Third, we evaluate the benefits that lossy compression methods bring about in interference-limited multihop networks, where the channel access is a source of inefficiency due to collisions and transmission scheduling. Our results reveal that the DCT-based schemes are the best option in terms of compression efficiency but are inefficient in terms of energy consumption. Instead, linear methods lead to substantial savings in terms of energy expenditure by, at the same time, leading to satisfactory compression ratios, reduced network delay, and increased reliability performance.
Funder
Università degli Studi di Padova
Spanish
MOSAICS project, “MOnitoring Sensor and Actuator networks through Integrated Compressive Sensing and data gathering,”
Seventh Framework Programme
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献