Typealike

Author:

Chhibber Nalin1,Surale Hemant Bhaskar1,Matulic Fabrice2,Vogel Daniel1

Affiliation:

1. University of Waterloo, Waterloo, ON, Canada

2. Preferred Networks Inc., Tokyo, Japan

Abstract

We propose a style of hand postures to trigger commands on a laptop. The key idea is to perform hand-postures while keeping the hands on, beside, or below the keyboard, to align with natural laptop usage. 36 hand-posture variations are explored considering three resting locations, left or right hand, open or closed hand, and three wrist rotation angles. A 30-participant formative study measures posture preferences and generates a dataset of nearly 350K images under different lighting conditions and backgrounds. A deep learning recognizer achieves over 97% accuracy when classifying all 36 postures with 2 additional non-posture classes for typing and non-typing. A second experiment with 20 participants validates the recognizer under real-time usage and compares posture invocation time with keyboard shortcuts. Results find low error rates and fast formation time, indicating postures are close to current typing and pointing postures. Finally, practical use case demonstrations are presented, and further extensions discussed.

Funder

NSERC Discovery Grant

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transferable Microgestures Across Hand Posture and Location Constraints: Leveraging the Middle, Ring, and Pinky Fingers;Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology;2023-10-29

2. Project Mihr: Enabling Gestural Interactions on a Keyboard using a Graphene-based Fabric;Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

3. A Survey on 3D Hand Detection and Tracking Algorithms for Human Computer Interfacing;Intelligent Systems Design and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3