Future vector microprocessor extensions for data aggregations

Author:

Hayes Timothy1,Palomar Oscar1,Unsal Osman2,Cristal Adrian3,Valero Mateo1

Affiliation:

1. Barcelona Supercomputing Center and Universitat Politècnica de Catalunya

2. Barcelona Supercomputing Center

3. Barcelona Supercomputing Center and Universitat Politècnica de Catalunya and Consejo Superior de Investigaciones Científicas (IIIA-CSIC)

Abstract

As the rate of annual data generation grows exponentially, there is a demand to aggregate and summarise vast amounts of information quickly. In the past, frequency scaling was relied upon to push application throughput. Today, Dennard scaling has ceased and further performance must come from exploiting parallelism. Single instruction-multiple data (SIMD) instruction sets offer a highly efficient and scalable way of exploiting data-level parallelism (DLP). While microprocessors originally offered very simple SIMD support targeted at multimedia applications, these extensions have been growing both in width and functionality. Observing this trend, we use a simulation framework to model future SIMD support and then propose and evaluate five different ways of vectorising data aggregation. We find that although data aggregation is abundant in DLP, it is often too irregular to be expressed efficiently using typical SIMD instructions. Based on this observation, we propose a set of novel algorithms and SIMD instructions to better capture this irregular DLP. Furthermore, we discover that the best algorithm is highly dependent on the characteristics of the input. Our proposed solution can dynamically choose the optimal algorithm in the majority of cases and achieves speedups between 2.7 × and 7.6 × over a scalar baseline.

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online monitoring of spatio-temporal properties for imprecise signals;Proceedings of the 19th ACM-IEEE International Conference on Formal Methods and Models for System Design;2021-11-20

2. Poker: permutation-based SIMD execution of intensive tree search by path encoding;Proceedings of the 2018 International Symposium on Code Generation and Optimization;2018-02-24

3. Energy-efficient Database Machines;Proceedings of the 2017 ACM International Conference on Management of Data - SIGMOD '17;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3