ASIC clouds

Author:

Magaki Ikuo1,Khazraee Moein1,Gutierrez Luis Vega1,Taylor Michael Bedford1

Affiliation:

1. UC San Diego

Abstract

GPU and FPGA-based clouds have already demonstrated the promise of accelerating computing-intensive workloads with greatly improved power and performance. In this paper, we examine the design of ASIC Clouds, which are purpose-built datacenters comprised of large arrays of ASIC accelerators, whose purpose is to optimize the total cost of ownership (TCO) of large, high-volume chronic computations, which are becoming increasingly common as more and more services are built around the Cloud model. On the surface, the creation of ASIC clouds may seem highly improbable due to high NREs and the inflexibility of ASICs. Surprisingly, however, large-scale ASIC Clouds have already been deployed by a large number of commercial entities, to implement the distributed Bitcoin cryptocurrency system. We begin with a case study of Bitcoin mining ASIC Clouds, which are perhaps the largest ASIC Clouds to date. From there, we design three more ASIC Clouds, including a YouTube-style video transcoding ASIC Cloud, a Litecoin ASIC Cloud, and a Convolutional Neural Network ASIC Cloud and show 2-3 orders of magnitude better TCO versus CPU and GPU. Among our contributions, we present a methodology that given an accelerator design, derives Pareto-optimal ASIC Cloud Servers, by extracting data from place-and-routed circuits and computational fluid dynamic simulations, and then employing clever but brute-force search to find the best jointly-optimized ASIC, DRAM subsystem, motherboard, power delivery system, cooling system, operating voltage, and case design. Moreover, we show how data center parameters determine which of the many Pareto-optimal points is TCO-optimal. Finally we examine when it makes sense to build an ASIC Cloud, and examine the impact of ASIC NRE.

Publisher

Association for Computing Machinery (ACM)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. vCrypto: a Unified Para-Virtualization Framework for Heterogeneous Cryptographic Resources;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

2. M2VT: A Multi-Output Encoder Accelerator for Multiple-Way Video Transcoding;Proceedings of the Great Lakes Symposium on VLSI 2023;2023-06-05

3. SimBricks;Proceedings of the ACM SIGCOMM 2022 Conference;2022-08-22

4. A Hardware Accelerator for Protocol Buffers;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

5. A novel virtual machine placement algorithm using RF element in cloud infrastructure;The Journal of Supercomputing;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3