Prophesy

Author:

Taylor Valerie1,Wu Xingfu2,Stevens Rick3

Affiliation:

1. Texas A&M University, College Station, TX

2. Northwestern University, Evanston, IL

3. Argonne National Laboratory, Argonne, IL

Abstract

Performance is an important issue with any application, especially grid applications. Efficient execution of applications requires insight into how the system features impact the performance of the applications. This insight generally results from significant experimental analysis and possibly the development of performance models. This paper present the Prophesy system, for which the novel component is the model development. In particular, this paper discusses the use of our coupling parameter (i.e., a metric that attempts to quantify the interaction between kernels that compose an application) to develop application models. We discuss how this modeling technique can be used in the analysis of grid applications.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference18 articles.

1. {AL} The Alliance http://www.alliance.uiuc.edu/ {AL} The Alliance http://www.alliance.uiuc.edu/

2. {TG} TeraGrid Project http://www.teragrid.org/ {TG} TeraGrid Project http://www.teragrid.org/

3. {GP} GriPhN Project http://www.griphn.org/ {GP} GriPhN Project http://www.griphn.org/

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modular performance prediction for scientific workflows using Machine Learning;Future Generation Computer Systems;2021-01

2. A Tool for Runtime Analysis of Performance and Energy Usage in NUMA Systems;Tools for High Performance Computing 2018 / 2019;2021

3. Predictive performance modeling for distributed batch processing using black box monitoring and machine learning;Information Systems;2019-05

4. A machine learning approach for modular workflow performance prediction;Proceedings of the 12th Workshop on Workflows in Support of Large-Scale Science - WORKS '17;2017

5. Modeling the Energy-Time Performance of MIC Architecture System;2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS);2016-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3