Applying Probabilistic Model Checking to the Behavior Guidance and Abnormality Detection for A-MCI Patients under Wireless Sensor Network

Author:

Gao Honghao1,Zhou Lin1,Kim Jung Yoon2,Li Ying3,Huang Wanqiu3

Affiliation:

1. School of Computer Engineering and Science, Shanghai University, China

2. College of Future Industry, Gachon University, Seongnam, South Korea

3. School of Computer Science, Zhejiang University, Hangzhou, China

Abstract

With the development of the Internet of Medical Things (IoMT) , indoor wireless sensor networks (WSNs) have been used to monitor Alzheimer's disease patients daily and guide their behaviors. Alzheimer's disease may seriously impact patients’ memory, and thoughts of “what should I do” can unexpectedly form in their mind. This cognitive impairment can affect patients’ independence and well-being. As a basic infrastructure for future healthcare systems, WSN can collect patient behaviors, such as their positions and states, to support safety and health analyses. Therefore, this paper proposes a probabilistic model checking-based method to predict patient behaviors and detect abnormal behaviors related to mild cognitive impairment to help patients rebuild their confidence and perception. First, the layout of the home environment is abstracted as a formal grid, and a user activity model (UAM) is proposed in the form of discrete-time Markov chain (DTMC) to describe patients’ activity based on data collected by sensors. Second, because Alzheimer's patients with mild cognitive impairment (A-MCI) often forget their next daily activities, we classify and describe their daily behaviors as verification requirements in the form of probabilistic computational tree logic (PCTL) . Then, the UAM is input into a probabilistic model checking tool and compared against the verification property PCTL to calculate the probability values and assess temporal behaviors. As result, the activity with the largest probability is selected for behavior guidance. Third, we demonstrate the process of detecting abnormalities, including activities with abnormal temporal behaviors and activities with normal temporal behaviors but unexpected probabilities that may be repeated more than twice. The key states are extracted from the UAM to specify the verification properties for abnormality detection. Finally, a case study is presented to demonstrate the usability and feasibility of our proposed method.

Funder

National Key R&D Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3