Using Thermal Stimuli to Enhance Photo-Sharing in Social Media

Author:

Akazue Moses1,Halvey Martin2,Baillie Lynne3

Affiliation:

1. Glasgow Caledonian University

2. University of Strathclyde

3. Heriot-Watt University

Abstract

Limited work has been undertaken to show how the emotive ability of thermal stimuli can be used for interaction purposes. One potential application area is using thermal stimuli to influence emotions in images shared online such as social media platforms. This paper presents a two-part study, which examines how the documented emotive property of thermal stimuli can be applied to enhance social media images. Participants in part-one supplied images from their personal collection or social media profiles, and were asked to augment each image with thermal stimuli based on the emotions they wanted to enhance or reduce. Part-one participants were interviewed to understand the effects they wanted augmented images to have. In part-two, these augmented images were perceived by a different set of participants in a simulated social media interface. Results showed strong agreement between the emotions augmented images were designed to evoke and the emotions they actually evoked as perceived by part-two participants. Participants in part-one selected thermal stimuli augmentation intended to modulate valence and arousal in images as a way of enhancing the realism of the images augmented. Part-two results indicate this was achieved as participants perceived thermal stimuli augmentation reduced valence in negative images and modulated valence and arousal in positive images.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the Influence of Visual Cues in Virtual Reality on the Spatial Perception of Physical Thermal Stimuli;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

2. EmoSparkle: Tangible Prototype to Convey Visual Expressions for Visually Impaired Individuals in Real-time Conversations;Proceedings of the Tenth International Symposium of Chinese CHI;2022-10-22

3. Feeling the Temperature of the Room;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2022-03-27

4. Therminator: Understanding the Interdependency of Visual and On-Body Thermal Feedback in Virtual Reality;Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems;2020-04-21

5. TherModule;Proceedings of the 10th Augmented Human International Conference 2019;2019-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3