Affiliation:
1. Department of Computer Science, Columbia University, New York, NY
Abstract
This paper describes an object-space shadow generation algorithm for static polygonal environments illuminated by movable point light sources. The algorithm can be easily implemented on any graphics system that provides fast polygon scan-conversion and achieves near real-time performance for environments of modest size. It combines elements of two kinds of current shadow generation algorithms: two-pass object-space approaches and shadow volume approaches. For each light source a Binary Space Partitioning (BSP) tree is constructed that represents the shadow volume of the polygons facing it. As each polygon's contribution to a light source's shadow volume is determined, the polygon's shadowed and lit fragments are computed by filtering it down the shadow volume BSP tree. The polygonal scene with its computed shadows can be rendered with any polygon-based visible-surface algorithm. Since the shadow volumes and shadows are computed in object space, they can be used for further analysis of the scene. Pseudocode is provided, along with pictures and timings from an interactive implementation.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,General Computer Science
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献