Efficient fuzzy search in large text collections

Author:

Bast Hannah1,Celikik Marjan1

Affiliation:

1. Albert Ludwigs University, Freiburg, Germany

Abstract

We consider the problem of fuzzy full-text search in large text collections, that is, full-text search which is robust against errors both on the side of the query as well as on the side of the documents. Standard inverted-index techniques work extremely well for ordinary full-text search but fail to achieve interactive query times (below 100 milliseconds) for fuzzy full-text search even on moderately-sized text collections (above 10 GBs of text). We present new preprocessing techniques that achieve interactive query times on large text collections (100 GB of text, served by a single machine). We consider two similarity measures, one where the query terms match similar terms in the collection (e.g., algorithm matches algoritm or vice versa) and one where the query terms match terms with a similar prefix in the collection (e.g., alori matches algorithm). The latter is important when we want to display results instantly after each keystroke (search as you type). All algorithms have been fully integrated into the CompleteSearch engine.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online to Offline Crossover of White Supremacist Propaganda;Companion Proceedings of the ACM Web Conference 2023;2023-04-30

2. Efficient Top-k Keyword Search in Relational Databases Considering Maximum Integrated Candidate Network (MICN);2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS);2022-12-28

3. Quality Evaluation for Documental Big Data;Proceedings of the 22nd International Conference on Enterprise Information Systems;2020

4. BEVA;ACM Transactions on Database Systems;2016-04-07

5. Context-Aware Approximate String Matching for Large-Scale Real-Time Entity Resolution;2015 IEEE International Conference on Data Mining Workshop (ICDMW);2015-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3