Modeling reformulation using query distributions

Author:

Xue Xiaobing1,Croft W. Bruce1

Affiliation:

1. University of Massachusetts, Amherst, MA

Abstract

Query reformulation modifies the original query with the aim of better matching the vocabulary of the relevant documents, and consequently improving ranking effectiveness. Previous models typically generate words and phrases related to the original query, but do not consider how these words and phrases would fit together in actual queries. In this article, a novel framework is proposed that models reformulation as a distribution of actual queries, where each query is a variation of the original query. This approach considers an actual query as the basic unit and thus captures important query-level dependencies between words and phrases. An implementation of this framework that only uses publicly available resources is proposed, which makes fair comparisons with other methods using TREC collections possible. Specifically, this implementation consists of a query generation step that analyzes the passages containing query words to generate reformulated queries and a probability estimation step that learns a distribution for reformulated queries by optimizing the retrieval performance. Experiments on TREC collections show that the proposed model can significantly outperform previous reformulation models.

Funder

Division of Information and Intelligent Systems

Center for Intelligent Information Retrieval

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DeepQFM: a deep learning based query facets mining method;Information Retrieval Journal;2023-10-30

2. Improving Search Clarification with Structured Information Extracted from Search Results;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

3. Query Sub-intent Mining by Incorporating Search Results with Query Logs for Information Retrieval;2023 IEEE 8th International Conference on Big Data Analytics (ICBDA);2023-03-03

4. Stochastic Optimization of Text Set Generation for Learning Multiple Query Intent Representations;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

5. Revisiting Open Domain Query Facet Extraction and Generation;Proceedings of the 2022 ACM SIGIR International Conference on Theory of Information Retrieval;2022-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3