Chromatic Correlation Clustering

Author:

Bonchi Francesco1,Gionis Aristides2,Gullo Francesco1,Tsourakakis Charalampos E.3,Ukkonen Antti4

Affiliation:

1. Yahoo Labs, Spain

2. Aalto University, Finland

3. Harvard School of Engineering and Applied Sciences

4. Aalto University and Finnish Institute of Occupational Health, Finland

Abstract

We study a novel clustering problem in which the pairwise relations between objects are categorical . This problem can be viewed as clustering the vertices of a graph whose edges are of different types ( colors ). We introduce an objective function that ensures the edges within each cluster have, as much as possible, the same color. We show that the problem is NP -hard and propose a randomized algorithm with approximation guarantee proportional to the maximum degree of the input graph. The algorithm iteratively picks a random edge as a pivot, builds a cluster around it, and removes the cluster from the graph. Although being fast, easy to implement, and parameter-free, this algorithm tends to produce a relatively large number of clusters. To overcome this issue we introduce a variant algorithm, which modifies how the pivot is chosen and how the cluster is built around the pivot. Finally, to address the case where a fixed number of output clusters is required, we devise a third algorithm that directly optimizes the objective function based on the alternating-minimization paradigm. We also extend our objective function to handle cases where object’s relations are described by multiple labels. We modify our randomized approximation algorithm to optimize such an extended objective function and show that its approximation guarantee remains proportional to the maximum degree of the graph. We test our algorithms on synthetic and real data from the domains of social media, protein-interaction networks, and bibliometrics. Results reveal that our algorithms outperform a baseline algorithm both in the task of reconstructing a ground-truth clustering and in terms of objective-function value.

Funder

Yahoo! Internship program

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3