Automatic graders for programming classes

Author:

Hollingsworth Jack1

Affiliation:

1. Computer Laboratory, Rensselaer Polytechnic Institute, Troy, New York

Abstract

Fifteen months ago the first version of an “automatic grader” was tried with a group of twenty students taking a formal course in programming. The first group of twenty programs took only five minutes on the computer (an IBM 650). With such a satisfactory beginning, the grader was then used for the entire course with this group of students and have been used at Rensselaer ever since. For all exercises, the average time spent on the computer has run from half a minute to a minute for each student. In general only an eighth as much computer time is required when the grader is used as is required when each student is expected to run his own program, probably less than a third as much staff time, and considerably less student time. The grader easily justifies itself on economic grounds. It accomplishes more than savings in time and money; it makes possible the teaching of programming to large numbers of students. This spring we had 80 students taking a full semester course in programming; over 120 are expected next spring. We could not accommodate such numbers without the use of the grader. Even though the grader makes the teaching of programming to large numbers of students possible and economically feasible, a most serious question remains, how well did the students learn? After fifteen months, our experience leads us to believe that students learn programming not only as well but probably better than they did under the method we did use—laboratory groups of four or five students. They are not as skilled in machine operation, however, since they get only a brief introduction to it late in the course. After learning programming, very little time is needed for each student to become at least an adequate machine operator. Students seem to like the grader and are not reluctant to suggest improvements!

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Impact of Assessment Policies on Marginalized Students' Experiences in Post-Secondary Programming Courses;Proceedings of the 2024 ACM Conference on International Computing Education Research - Volume 1;2024-08-12

2. Grading Programming Assignments by Summarization;ACM Turing Award Celebration Conference 2024;2024-07-05

3. How Beginning Programmers and Code LLMs (Mis)read Each Other;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. Learning with Style: Improving Student Code-Style Through Better Automated Feedback;Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1;2024-03-07

5. Tartare: Automatic Generation of C Pointer Statements and Feedback;Proceedings of the 26th Australasian Computing Education Conference;2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3