Affiliation:
1. College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan, China
Abstract
Determining the optimal microarchitecture configuration of a processor at the early stages of design is undeniably a challenge. Due to many parameters at the microarchitecture level, finding the proper combination of these parameters to arrive at a balanced design is difficult. Application-specific Design Space Exploration (DSE) is even more difficult, since the property of application needs to be considered during the DSE process. Improving the speed and accuracy of the DSE process remains a particular challenge in microprocessor design.
In this article, we propose a novel processor DSE methodology based on criticality and sensitivity analysis, named Criticality and Sensitivity-based Multi-Objective DSE (CSMO-DSE). In our methodology, a dependence-graph is derived from the profile generated by running a program on an instrumented cycle-accurate microprocessor simulator. Then, the criticality of the processor’s performance events is obtained through critical path analysis. The sensitivity of microarchitecture parameters to various performance events is also analyzed. Then, this information is used to optimize performance, power/area, and energy efficiency of the design. Experiments with SPEC 2006 show that CSMO-DSE methodology is 4.73× faster than the baseline DSE methodology and that the quality of result (QoR) is better than the baseline methodology for all the benchmark programs.
Funder
National Natural Science Foundation of China
National Key R8D Program of China
HGJ project of China
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献