1. Bentivogli, L., Bisazza, A., Cettolo, M., and Federico, M. 2016. Neural versus phrase-based machine translation quality: a case study. arXiv preprint arXiv:1608.04631. (Aug. 2016)
2. Junczys-Dowmunt, M., Dwojak, T., and Hoang, H. 2016. Is neural machine translation ready for deployment? a case study on 30 translation directions. arXiv preprint arXiv:1610.01108. (Oct. 2016)
3. Su, J., Xiong, D., Huang, S., Han, X., and Yao, J. 2015. Graph-Based Collective Lexical Selection for Statistical Machine Translation, In Proceedings of the Conference on Empirical Methods in Natural Language Processing (Lisbon, Portugal, Sept. 17-21, 2015). EMNLP 2015. ALC, NY, 1238--1247.
4. Neale, S., Gomes, L., Agirre, E., de Lacalle, O. L., and Branco, A. 2016. Word sense-aware machine translation: Including senses as contextual features for improved translation models. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (Portorož, Slovenia, May 23-28, 2016). LREC 2016. ELRA, Paris, 2777--2783.
5. Vintar, Š., and Fišer, D. 2016. Using wordnet-based word sense disambiguation to improve MT performance. Hybrid Approaches to Machine Translation. Springer, Cham, 191--205. DOI= http://doi.org/10.1007/978-3-319-21311-8_8.