Bao

Author:

Marcus Ryan1,Negi Parimarjan2,Mao Hongzi2,Tatbul Nesime1,Alizadeh Mohammad2,Kraska Tim2

Affiliation:

1. MIT CSAIL, Intel Labs

2. MIT CSAIL

Abstract

Recent efforts applying machine learning techniques to query optimization have shown few practical gains due to substantive training overhead, inability to adapt to changes, and poor tail performance. Motivated by these difficulties, we introduce Bao (the Bandit optimizer). Bao takes advantage of the wisdom built into existing query optimizers by providing per-query optimization hints. Bao combines modern tree convolutional neural networks with Thompson sampling, a well-studied reinforcement learning algorithm. As a result, Bao automatically learns from its mistakes and adapts to changes in query workloads, data, and schema. Experimentally, we demonstrate that Bao can quickly learn strategies that improve end-to-end query execution performance, including tail latency, for several workloads containing longrunning queries. In cloud environments, we show that Bao can offer both reduced costs and better performance compared with a commercial system.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference38 articles.

1. Google Cloud Platform https://cloud.google.com/. Google Cloud Platform https://cloud.google.com/.

2. Learning to accurately COUNT with query-driven predictive analytics

3. O. Chapelle and L. Li . An empirical evaluation of Thompson sampling. In Advances in Neural Information Processing Systems , NIPS'11 , 2011 . O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In Advances in Neural Information Processing Systems, NIPS'11, 2011.

4. M. Collier and H. U. Llorens . Deep Contextual Multi-armed Bandits. arXiv:1807.09809 [cs, stat] , July 2018 . M. Collier and H. U. Llorens. Deep Contextual Multi-armed Bandits. arXiv:1807.09809 [cs, stat], July 2018.

5. AI Meets AI

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blueprinting the Cloud: Unifying and Automatically Optimizing Cloud Data Infrastructures with BRAD;Proceedings of the VLDB Endowment;2024-07

2. Demonstrating λ-Tune: Exploiting Large Language Models for Workload-Adaptive Database System Tuning;Companion of the 2024 International Conference on Management of Data;2024-06-09

3. A survey on hybrid transactional and analytical processing;The VLDB Journal;2024-06-04

4. LBSC: A Cost-Aware Caching Framework for Cloud Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. GLO: Towards Generalized Learned Query Optimization;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3