1. Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. 2021. Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization. In KDD (Virtual Event, Singapore) (KDD '21). 2485--2494.
2. Yakun Chen Zihao Li Chao Yang XianzhiWang Guodong Long and Guandong Xu. 2023. Adaptive Graph Recurrent Network for Multivariate Time Series Imputation. In Neural Information Processing Mohammad Tanveer Sonali Agarwal Seiichi Ozawa Asif Ekbal and Adam Jatowt (Eds.). 64--73.
3. Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning, December 2014.
4. Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2016. beta-vae: Learning basic visual concepts with a constrained variational framework. In International conference on learning representations.
5. Kyle Hundman Valentino Constantinou Christopher Laporte Ian Colwell and Tom Soderstrom. 2018. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In KDD. 387--395.