Interpreting Natural Language Instructions Using Language, Vision, and Behavior

Author:

Benotti Luciana1,Lau Tessa2,Villalba Martín3

Affiliation:

1. Universidad Nacional de Córdoba, Argentina/CONICET, Argentina

2. Savioke, Inc., Sunnyvale, CA, USA

3. University of Potsdam, Germany/Universidad Nacional de Córdoba, Argentina

Abstract

We define the problem of automatic instruction interpretation as follows. Given a natural language instruction, can we automatically predict what an instruction follower, such as a robot, should do in the environment to follow that instruction? Previous approaches to automatic instruction interpretation have required either extensive domain-dependent rule writing or extensive manually annotated corpora. This article presents a novel approach that leverages a large amount of unannotated, easy-to-collect data from humans interacting in a game-like environment. Our approach uses an automatic annotation phase based on artificial intelligence planning, for which two different annotation strategies are compared: one based on behavioral information and the other based on visibility information. The resulting annotations are used as training data for different automatic classifiers. This algorithm is based on the intuition that the problem of interpreting a situated instruction can be cast as a classification problem of choosing among the actions that are possible in the situation. Classification is done by combining language, vision, and behavior information. Our empirical analysis shows that machine learning classifiers achieve 77% accuracy on this task on available English corpora and 74% on similar German corpora. Finally, the inclusion of human feedback in the interpretation process is shown to boost performance to 92% for the English corpus and 90% for the German corpus.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Reference48 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BehavE: Behaviour Understanding Through Automated Generation of Situation Models;KI 2021: Advances in Artificial Intelligence;2021

2. Towards Automated Generation of Semantic Annotation for Activity Recognition Problems;2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops);2020-03

3. Extracting Planning Operators from Instructional Texts for Behaviour Interpretation;Lecture Notes in Computer Science;2018

4. Introduction to the Special Issue on Machine Learning for Multiple Modalities in Interactive Systems and Robots;ACM Transactions on Interactive Intelligent Systems;2014-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3