1. The Polynomial Eigenvalue Problem is Well Conditioned for Random Inputs
2. Carlos Beltrán and Khazhgali Kozhasov. 2019. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics On-line First (2019) 19. 10.1007/s10208-019-09414-2 Carlos Beltrán and Khazhgali Kozhasov. 2019. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics On-line First (2019) 19. 10.1007/s10208-019-09414-2
3. Peter Bürgisser and Felipe Cucker. 2013. Condition. Grundlehren der mathematischen Wissenschaften Vol. 349. Springer-Verlag Berlin. 10.1007/978-3-642-38896-5 Peter Bürgisser and Felipe Cucker. 2013. Condition. Grundlehren der mathematischen Wissenschaften Vol. 349. Springer-Verlag Berlin. 10.1007/978-3-642-38896-5
4. Michael Burr Felix Krahmer and Chee Yap. 2009. Continuous amortization: A non-probabilistic adaptive analysis technique. Electronic Colloquium on Computational Complexity 16 Report. No. 136 (Dec. 2009) 22. Michael Burr Felix Krahmer and Chee Yap. 2009. Continuous amortization: A non-probabilistic adaptive analysis technique. Electronic Colloquium on Computational Complexity 16 Report. No. 136 (Dec. 2009) 22.
5. Continuous amortization and extensions: With applications to bisection-based root isolation