1. Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., ... Goldberg, K. (2017). Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics. The International Journal of Robotics Research, 36(13-14), 1425-1440
2. Morrison, D., Corke, P., Leitner, J., & Wachtel, A. (2018). Closing the Loop for Robotic Grasping: A Real-time, Generative Grasp Synthesis Approach. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1-8)
3. Pinto, L., & Gupta, A. (2016). Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot Hours. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3406-3413).
4. Redmon, J., & Angelova, A. (2015). Real-time grasp detection using convolutional neural networks. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1316-1322)
5. Deep learning for detecting robotic grasps;A.;The International Journal of Robotics Research,2015