Programming matrix algorithms-by-blocks for thread-level parallelism

Author:

Quintana-Ortí Gregorio1,Quintana-Ortí Enrique S.1,Geijn Robert A. Van De2,Zee Field G. Van2,Chan Ernie2

Affiliation:

1. Universidad Jaume I, Castellón, Spain

2. The University of Texas at Austin, Austin, TX

Abstract

With the emergence of thread-level parallelism as the primary means for continued performance improvement, the programmability issue has reemerged as an obstacle to the use of architectural advances. We argue that evolving legacy libraries for dense and banded linear algebra is not a viable solution due to constraints imposed by early design decisions. We propose a philosophy of abstraction and separation of concerns that provides a promising solution in this problem domain. The first abstraction, FLASH, allows algorithms to express computation with matrices consisting of contiguous blocks, facilitating algorithms-by-blocks. Operand descriptions are registered for a particular operation a priori by the library implementor. A runtime system, SuperMatrix, uses this information to identify data dependencies between suboperations, allowing them to be scheduled to threads out-of-order and executed in parallel. But not all classical algorithms in linear algebra lend themselves to conversion to algorithms-by-blocks. We show how our recently proposed LU factorization with incremental pivoting and a closely related algorithm-by-blocks for the QR factorization, both originally designed for out-of-core computation, overcome this difficulty. Anecdotal evidence regarding the development of routines with a core functionality demonstrates how the methodology supports high productivity while experimental results suggest that high performance is abundantly achievable.

Funder

Fundación Bancaja

Division of Computing and Communication Foundations

CICYT

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Task-based Parallel Programming for Scalable Matrix Product Algorithms;ACM Transactions on Mathematical Software;2023-06-15

2. A Review of High-Performance Computing Methods for Power Flow Analysis;Mathematics;2023-05-26

3. Programming parallel dense matrix factorizations and inversion for new-generation NUMA architectures;Journal of Parallel and Distributed Computing;2023-05

4. Computing rank‐revealing factorizations of matrices stored out‐of‐core;Concurrency and Computation: Practice and Experience;2023-04-17

5. Experiences with nested parallelism in task-parallel applications using malleable BLAS on multicore processors;The International Journal of High Performance Computing Applications;2023-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3