Concurrent size

Author:

Sela Gal1ORCID,Petrank Erez1ORCID

Affiliation:

1. Technion, Israel

Abstract

The size of a data structure (i.e., the number of elements in it) is a widely used property of a data set. However, for concurrent programs, obtaining a correct size efficiently is non-trivial. In fact, the literature does not offer a mechanism to obtain a correct (linearizable) size of a concurrent data set without resorting to inefficient solutions, such as taking a full snapshot of the data structure to count the elements, or acquiring one global lock in all update and size operations. This paper presents a methodology for adding a concurrent linearizable size operation to sets and dictionaries with a relatively low performance overhead. Theoretically, the proposed size operation is wait-free with asymptotic complexity linear in the number of threads (independently of data-structure size). Practically, we evaluated the performance overhead by adding size to various concurrent data structures in Java−a skip list, a hash table and a tree. The proposed linearizable size operation executes faster by orders of magnitude compared to the existing option of taking a snapshot, while incurring a throughput loss of 1%−20% on the original data structure’s operations.

Funder

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference32 articles.

1. 2022. Java Platform Version 18 API Specification. https://docs.oracle.com/en/java/javase/18/docs/api/index.html 2022. Java Platform Version 18 API Specification. https://docs.oracle.com/en/java/javase/18/docs/api/index.html

2. Atomic snapshots of shared memory

3. Interrupting snapshots and the Java size method

4. Harnessing epoch-based reclamation for efficient range queries

5. Counting networks

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concurrent Size (Abstract);Proceedings of the 2024 ACM Workshop on Highlights of Parallel Computing;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3