Survey on Sketch-to-photo Translation

Author:

Donoso Diego1ORCID,Saavedra Jose M.2ORCID

Affiliation:

1. Department of Computer Science, University of Chile, Chile

2. Universidad de los Andes, Chile

Abstract

Sketch-based understanding is involved in human communication and cognitive development, making it essential in visual perception. A specific task in this domain is sketch-to-photo translation, where a model produces realistic images from simple drawings. To this end, large paired training datasets are commonly required, which is impractical in real applications. Thus, this work studies conditional generative models for sketch-to-photo translation, overcoming the lack of training datasets by a self-supervised approach that produces sketch-photo pairs from a target catalog. Our study shows the benefit of cycle-consistency loss and UNet architectures that, together with the proposed dataset generation, improve performance in real applications like eCommerce. Our results also reveal the weakness of conditional DDPMs for generating images resembling the input sketch, even though they achieve a high FID score.

Funder

National Center for Artificial Intelligence

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference51 articles.

1. MaskSketch: Unpaired structure-guided masked image generation;Bashkirova Dina;CoRR,2023

2. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of the Annual Conference on Neural Information Processing Systems.

3. Sketching out the details: Sketch-based image retrieval using convolutional neural networks with multi-stage regression

4. SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis

5. Diffusion models in vision: A survey;Croitoru Florinel-Alin;IEEE Trans. Pattern Anal. Mach. Intell.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3