Scaling LAPACK panel operations using parallel cache assignment

Author:

Castaldo Anthony M.1,Whaley R. Clint1,Samuel Siju1

Affiliation:

1. University of Texas at San Antonio, TX

Abstract

In LAPACK many matrix operations are cast as block algorithms which iteratively process a panel using an unblocked algorithm and then update a remainder matrix using the high performance Level 3 BLAS. The Level 3 BLAS have excellent scaling, but panel processing tends to be bus bound, and thus scales with bus speed rather than the number of processors ( p ). Amdahl's law therefore ensures that as p grows, the panel computation will become the dominant cost of these LAPACK routines. Our contribution is a novel parallel cache assignment approach to the panel factorization which we show scales well with p . We apply this general approach to the QR, QL, RQ, LQ and LU panel factorizations. We show results for two commodity platforms: an 8-core Intel platform and a 32-core AMD platform. For both platforms and all twenty implementations (five factorizations each of which is available in 4 types), we present results that demonstrate that our approach yields significant speedup over the existing state of the art.

Funder

Office of Cyberinfrastructure

National Science Foundation

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference37 articles.

1. Comparative study of one-sided factorizations with multiple software packages on multi-core hardware

2. Anderson E. Bai Z. Bischof C. Demmel J. Dongarra J. Du Croz J. Greenbaum A. Hammarling S. Mckenney A. Ostrouchov S. and Sorensen J. 1999. LAPACK Users' Guide 3rd Ed. SIAM Philadelphia PA. Anderson E. Bai Z. Bischof C. Demmel J. Dongarra J. Du Croz J. Greenbaum A. Hammarling S. Mckenney A. Ostrouchov S. and Sorensen J. 1999. LAPACK Users' Guide 3rd Ed. SIAM Philadelphia PA.

3. The WY Representation for Products of Householder Matrices

4. Buttari A. Langou J. Kurzak J. and Dongarra J. 2007b. A class of parallel tiled linear algebra algorithms for multicore architectures. Tech. rep. UT-CS-07-600. University of Tennessee. Buttari A. Langou J. Kurzak J. and Dongarra J. 2007b. A class of parallel tiled linear algebra algorithms for multicore architectures. Tech. rep. UT-CS-07-600. University of Tennessee.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Optimized Framework for Matrix Factorization on the New Sunway Many-core Platform;ACM Transactions on Architecture and Code Optimization;2023-03

2. A Case for Malleable Thread-Level Linear Algebra Libraries: The LU Factorization With Partial Pivoting;IEEE Access;2019

3. An Auto-Tuning Framework for a NUMA-Aware Hessenberg Reduction Algorithm;Companion of the 2018 ACM/SPEC International Conference on Performance Engineering;2018-04-02

4. Fast Blocking of Householder Reflectors on Graphics Processors;2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP);2018-03

5. Look-ahead in the two-sided reduction to compact band forms for symmetric eigenvalue problems and the SVD;Numerical Algorithms;2018-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3