Compositional Programming

Author:

Zhang Weixin1,Sun Yaozhu2,Oliveira Bruno C. D. S.2

Affiliation:

1. University of Bristol Bristol United Kingdom and The University of Hong Kong, Hong Kong, China

2. The University of Hong Kong, Hong Kong, China

Abstract

Modularity is a key concern in programming. However, programming languages remain limited in terms of modularity and extensibility. Small canonical problems, such as the Expression Problem (EP), illustrate some of the basic issues: the dilemma between choosing one kind of extensibility over another one in most programming languages. Other problems, such as how to express dependencies in a modular way, add up to the basic issues and remain a significant challenge. This article presents a new statically typed modular programming style called Compositional Programming . In Compositional Programming, there is no EP: It is easy to get extensibility in multiple dimensions (i.e., it is easy to add new variants as well as new operations). Compositional Programming offers an alternative way to model data structures that differs from both algebraic datatypes in functional programming and conventional OOP class hierarchies. We introduce four key concepts for Compositional Programming: compositional interfaces , compositional traits , method patterns , and nested trait composition . Altogether, these concepts allow us to naturally solve challenges such as the Expression Problem, model attribute-grammar-like programs, and generally deal with modular programs with complex dependencies . We present a language design, called CP , which is proved to be type-safe, together with several examples and three case studies.

Funder

Hong Kong Research Grant Council

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference85 articles.

1. A calculus of module systems;Ancona Davide;J. Funct. Prog.,2002

2. A filter lambda model and the completeness of type assignment 1;Barendregt Henk;J. Symb. Logic,1983

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3