Machine Learning-based Intrusion Detection for Smart Grid Computing: A Survey
Author:
Affiliation:
1. Virginia Tech, Blacksburg, Virginia, VA, USA
2. Virginia Tech, Falls Church, VA, USA
3. Virginia Tech, Blacksburg, VA, USA
Abstract
Funder
National Science Foundation
Department of Energy Solar Energy Technologies Office
Virginia Tech, and Commonwealth Cyber Initiative, State of Virginia
NSF
Virginia Tech’s Integrated Security Destination Area-The Integrated Security Education and Research Center (ISDA-ISERC) Research Program
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction
Link
https://dl.acm.org/doi/pdf/10.1145/3578366
Reference137 articles.
1. WAMS Cyber-Physical Test Bed for Power System, Cybersecurity Study, and Data Mining
2. Hossein Ghassempour Aghamolki, Zhixin Miao, and Lingling Fan. 2015. A hardware-in-the-loop SCADA testbed. In North American Power Symposium (NAPS). IEEE, 1–6.
3. Mining sequential patterns
4. WADI
5. Cristina Alcaraz, Lorena Cazorla, and Gerardo Fernandez. 2014. Context-awareness using anomaly-based detectors for smart grid domains. In International Conference on Risks and Security of Internet and Systems. Springer, 17–34.
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AI-based anomaly identification techniques for vehicles communication protocol systems: Comprehensive investigation, research opportunities and challenges;Internet of Things;2024-10
2. Research on Security Detection of Embedded Terminals in Power Grids Under Artificial Intelligence;International Journal of Grid and High Performance Computing;2024-07-17
3. An Intelligent Big Data Security Framework Based on AEFS-KENN Algorithms for the Detection of Cyber-Attacks from Smart Grid Systems;Big Data Mining and Analytics;2024-06
4. Exploiting Autoencoder-Based Anomaly Detection to Enhance Cybersecurity in Power Grids;Future Internet;2024-05-22
5. Advancements in Anomaly Detection: A Review of Machine Learning Applications in Cyber-Physical System Networks;2024-05-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3