On Learning Prediction Models for Tourists Paths

Author:

Muntean Cristina Ioana1,Nardini Franco Maria1,Silvestri Fabrizio2,Baraglia Ranieri1

Affiliation:

1. ISTI-CNR, Pisa, Italy

2. Yahoo Labs, London, United Kingdom

Abstract

In this article, we tackle the problem of predicting the “next” geographical position of a tourist, given her history (i.e., the prediction is done accordingly to the tourist’s current trail) by means of supervised learning techniques, namely Gradient Boosted Regression Trees and Ranking SVM. The learning is done on the basis of an object space represented by a 68-dimension feature vector specifically designed for tourism-related data. Furthermore, we propose a thorough comparison of several methods that are considered state-of-the-art in recommender and trail prediction systems for tourism, as well as a popularity baseline. Experiments show that the methods we propose consistently outperform the baselines and provide strong evidence of the performance and robustness of our solutions.

Funder

E-CLOUD

Italian PRIN 2011 project “Algoritmica delle Reti Sociali Tecno-Mediate”

EU projects InGeoCLOUDS

MIDAS

Regional (Tuscany) project SECURE!

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference37 articles.

1. World explorer

2. Mining people's trips from large scale geo-tagged photos

3. Ricardo Baeza-Yates Berthier Ribeiro-Neto and others. 1999. Modern information retrieval. Vol. 463. ACM Press New York. Ricardo Baeza-Yates Berthier Ribeiro-Neto and others. 1999. Modern information retrieval. Vol. 463. ACM Press New York.

4. A Trajectory-Based Recommender System for Tourism

5. LearNext

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3