Dynamic Security Analysis of Power Systems by a Sampling-Based Algorithm

Author:

Wu Qiang1,Koo T. John2,Susuki Yoshihiko3

Affiliation:

1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS)

2. Hong Kong Applied Science and Technology Research Institute (ASTRI), Shatin, Hong Kong

3. Osaka Prefecture University, Sakai, Japan

Abstract

Dynamic security analysis is an important problem of power systems on ensuring safe operation and stable power supply even when certain faults occur. No matter if such faults are caused by vulnerabilities of system components, physical attacks, or cyber-attacks that are more related to cyber-security, they eventually affect the physical stability of a power system. Examples of the loss of physical stability include the Northeast Blackout of 2003 in North America and the 2015 system-wide blackout in Ukraine. The nonlinear hybrid nature, that is, nonlinear continuous dynamics integrated with discrete switching, and the high degree of freedom property of power system dynamics make it challenging to conduct the dynamic security analysis. In this article, we use the hybrid automaton model to describe the dynamics of a power system and mainly deal with the index-1 differential-algebraic equation models regarding the continuous dynamics in different discrete states. The analysis problem is formulated as a reachability problem of the associated hybrid model. A sampling-based algorithm is then proposed by integrating modeling and randomized simulation of the hybrid dynamics to search for a feasible execution connecting an initial state of the post-fault system and a target set in the desired operation mode. The proposed method enables the use of existing power system simulators for the synthesis of discrete switching and control strategies through randomized simulation. The effectiveness and performance of the proposed approach are demonstrated with an application to the dynamic security analysis of the New England 39-bus benchmark power system exhibiting hybrid dynamics. In addition to evaluating the dynamic security, the proposed method searches for a feasible strategy to ensure the dynamic security of the system in the face of disruptions.

Funder

National Natural Science Foundation of China

Japan Science and Technology Agency (JST) CREST

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3