1. HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence
2. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery
3. S. Nicoli, J.A. Jargini, L.G. Magrini, C. D. M. Miranda, “Detection of nonconformities in monitoring system's measurements”,IEEE PES Conference on Innovative Smart Grid Technologies - Latin America (ISGT LA), Sao Paulo, 15–17 April, 2013.
4. M. Munir, S. Erkel, A. Dengel, S. Ahmed, “Pattern based contextual anomaly detection in HVAC systems”, Proceedings of IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1066–1073, 2017.
5. A. Ortiz, P.J. López, J. L. Luque, F. J. Martínez-Murcia, D. A. Aquino-Britez, J. Ortega, “An anomaly detection approach for dyslexia diagnosis using EEG signals”, J. M. F. Vicente, J. R. Álvarez-Sánchez, F. de la Paz, J. T. López, H. A. Moreo (eds.) Understanding the Brain Function and Emotions. LNCS, vol. 11486, pp. 369–378. Springer, Cham, 2019.