Social Learning in Multi Agent Multi Armed Bandits

Author:

Sankararaman Abishek1,Ganesh Ayalvadi2,Shakkottai Sanjay3

Affiliation:

1. The University of Texas at Austin, Austin , TX, USA

2. University of Bristol, Bristol, United Kingdom

3. The University of Texas at Austin, Austin, TX, USA

Abstract

Motivated by emerging need of learning algorithms for large scale networked and decentralized systems, we introduce a distributed version of the classical stochastic Multi-Arm Bandit (MAB) problem. Our setting consists of a large number of agents n that collaboratively and simultaneously solve the same instance of K armed MAB to minimize the average cumulative regret over all agents. The agents can communicate and collaborate among each other only through a pairwise asynchronous gossip based protocol that exchange a limited number of bits. In our model, agents at each point decide on (i) which arm to play, (ii) whether to, and if so (iii) what and whom to communicate with. Agents in our model are decentralized, namely their actions only depend on their observed history in the past. We develop a novel algorithm in which agents, whenever they choose, communicate only arm-ids and not samples, with another agent chosen uniformly and independently at random. The per-agent regret scaling achieved by our algorithm is $\BigO łeft( \fracłceil\fracK n \rceil+łog(n) Δ łog(T) + \fracłog^3(n) łog łog(n) Δ^2 \right) $. Furthermore, any agent in our algorithm communicates (arm-ids to an uniformly and independently chosen agent) only a total of Θ(łog(T))$ times over a time interval of T. We compare our results to two benchmarks - one where there is no communication among agents and one corresponding to complete interaction, where an agent has access to the entire system history of arms played and rewards obtained of all agents. We show both theoretically and empirically, that our algorithm experiences a significant reduction both in per-agent regret when compared to the case when agents do not collaborate and each agent is playing the standard MAB problem (where regret would scale linearly in K), and in communication complexity when compared to the full interaction setting which requires T communication attempts by an agent over T arm pulls. Our result thus demonstrates that even a minimal level of collaboration among the different agents enables a significant reduction in per-agent regret.

Funder

National Science Foundation

U.S. Department of Transportation

Army Research Office

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3