Affiliation:
1. University of Chile, Santiago, Chile
2. University of Helsinki, Helsinki, Finland
Abstract
Full-text indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text length. This concept has evolved into
self-indexes
, which in addition contain enough information to reproduce any text portion, so they
replace
the text. The exciting possibility of an index that takes space close to that of the compressed text, replaces it, and in addition provides fast search over it, has triggered a wealth of activity and produced surprising results in a very short time, which radically changed the status of this area in less than 5 years. The most successful indexes nowadays are able to obtain almost optimal space and search time simultaneously.
In this article we present the main concepts underlying (compressed) self-indexes. We explain the relationship between text entropy and regularities that show up in index structures and permit compressing them. Then we cover the most relevant self-indexes, focusing on how they exploit text compressibility to achieve compact structures that can efficiently solve various search problems. Our aim is to give the background to understand and follow the developments in this area.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
499 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献