Affiliation:
1. McGill University
2. University of Toronto
3. Institute of Mathematics of the Academy of Sciences of the Czech Republic
Abstract
Kushilevitz [1989] initiated the study of information-theoretic privacy within the context of communication complexity. Unfortunately, it has been shown that most interesting functions are not privately computable [Kushilevitz 1989, Brandt and Sandholm 2008]. The unattainability of perfect privacy for many functions motivated the study of
approximate privacy
. Feigenbaum et al. [2010a, 2010b] define notions of worst-case as well as average-case approximate privacy and present several interesting upper bounds as well as some open problems for further study. In this article, we obtain asymptotically tight bounds on the trade-offs between both the worst-case and average-case approximate privacy of protocols and their communication cost for Vickrey auctions.
Further, we relate the notion of average-case approximate privacy to other measures based on information cost of protocols. This enables us to prove exponential lower bounds on the subjective approximate privacy of protocols for computing the Intersection function, independent of its communication cost. This proves a conjecture of Feigenbaum et al. [2010a].
Funder
RVO
GA ČR
Natural Sciences and Engineering Research Council of Canada
Center of Excellence CE-ITI
GA AV ČR
Ontario Ministry of Research and Innovation
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Theory and Mathematics,Theoretical Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献