Convex Sparse PCA for Unsupervised Feature Learning

Author:

Chang Xiaojun1,Nie Feiping2,Yang Yi3,Zhang Chengqi3,Huang Heng2

Affiliation:

1. University of Technology, Sydney, Ultimo NSW, Australia

2. University of Texas at Arlington, Arlington, TX

3. University of Technology, Ultimo NSW, Australia

Abstract

Principal component analysis (PCA) has been widely applied to dimensionality reduction and data pre-processing for different applications in engineering, biology, social science, and the like. Classical PCA and its variants seek for linear projections of the original variables to obtain the low-dimensional feature representations with maximal variance. One limitation is that it is difficult to interpret the results of PCA. Besides, the classical PCA is vulnerable to certain noisy data. In this paper, we propose a Convex Sparse Principal Component Analysis (CSPCA) algorithm and apply it to feature learning. First, we show that PCA can be formulated as a low-rank regression optimization problem. Based on the discussion, the l 2, 1 -normminimization is incorporated into the objective function to make the regression coefficients sparse, thereby robust to the outliers. Also, based on the sparse model used in CSPCA, an optimal weight is assigned to each of the original feature, which in turn provides the output with good interpretability. With the output of our CSPCA, we can effectively analyze the importance of each feature under the PCA criteria. Our new objective function is convex, and we propose an iterative algorithm to optimize it. We apply the CSPCA algorithm to feature selection and conduct extensive experiments on seven benchmark datasets. Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art unsupervised feature selection algorithms.

Funder

U.S

973 program

Australian Research Council Discovery Projects

Data to Decisions Cooperative Research Centre www.d2dcrc.com.au

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risk factor aggregation and stress testing;Quantitative Finance;2024-07-25

2. A novel robust adaptive subspace learning framework for dimensionality reduction;Applied Intelligence;2024-07-06

3. Image Classification on Hypersphere Loss;IEEE Transactions on Industrial Informatics;2024-04

4. Sparse robust adaptive unsupervised subspace learning for dimensionality reduction;Engineering Applications of Artificial Intelligence;2024-03

5. Outliers Robust Unsupervised Feature Selection for Structured Sparse Subspace;IEEE Transactions on Knowledge and Data Engineering;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3