1. Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical Debt Dataset. In PROMISE '19.
2. Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2020. Some sonarqube issues have a significant but small effect on faults and changes. a large-scale empirical study. Journal of Systems and Software (2020), 110750.
3. Maria Mathioudaki Dimitrios Tsoukalas Miltiadis Siavvas and Dionysios Kehagias. 2022. Comparing Univariate and Multivariate Time Series Models For Technical Debt Forecasting. In Computational Science and Its Applications. 62--78.
4. S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka. 2009. The evolution and impact of code smells: A case study of two open source systems. In International Symposium on Empirical Software Engineering and Measurement. 390--400.
5. Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on maintainability of code smells: a large scale empirical investigation. Empirical Software Engineering 23, 3 (01 Jun 2018), 1188--1221.