Real-Time Traffic Event Detection From Social Media

Author:

Wang Di1,Al-Rubaie Ahmad1,Clarke Sandra Stinčić2,Davies John2

Affiliation:

1. EBTIC, Khalifa University, Abu Dhabi, UAE

2. Research and Innovation, British Telecommunications, Ipswich, UK

Abstract

Smart communities are composed of groups, organizations, and individuals who share information and make use of that shared information for better decision making. Shared information can come from many sources, particularly, but not exclusively, from sensors and social media. Social media has become an important source of near-instantaneous user-generated information that can be shared and analyzed to support better decision making. One domain where social media data can add value is transportation and traffic management. This article looks at the exploitation of Twitter data in the traffic reporting domain. A key challenge is how to identify relevant information from a huge amount of user-generated data and then analyze the relevant data for automatic geocoded incident detection. The article proposes an instant traffic alert and warning system based on a novel latent Dirichlet allocation (LDA) approach (“tweet-LDA”). The system is evaluated and shown to perform better than related approaches.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference37 articles.

1. Enabling smart communities;Beddus Simon;Journal of the Institute of Telecommunications Professionals,2011

2. UK Traffic News. 2017. Ross Targett publishing. Retrieved July 8 2017 from https://uk-traffic-news-twitraffic.soft112.com/. UK Traffic News. 2017. Ross Targett publishing. Retrieved July 8 2017 from https://uk-traffic-news-twitraffic.soft112.com/.

3. From Twitter to detector: Real-time traffic incident detection using social media data

4. Real-Time Detection of Traffic From Twitter Stream Analysis

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3