A Map Inference Approach Using Signal Processing from Crowd-sourced GPS Data

Author:

He Eric1,Bai Fan2,Hay Curtis2,Chen Jinzhu2,Bhagavatula Vijayakumar3

Affiliation:

1. PNC, Pittsburgh, Pennsylvania

2. General Motors, Warren, Michigan

3. Carnegie Mellon University - Africa, Kigali, Rwanda

Abstract

The amount of GPS data that can be collected is increasing tremendously, thanks to the increased popularity of Global Position System (GPS) devices (e.g., smartphones). This article aims to develop novel methods of converting crowd-sourced GPS traces into road topology maps. We explore map inference using a three-stage approach, which incorporates a novel Multi-source Variable Rate (MSVR) signal reconstruction mechanism. Unlike conventional map inference methods based on map graph theory, our approach, to the best of our knowledge, is the first use of estimation theory for map inference. In particular, our approach addresses the unique challenges of vehicular GPS data. This data is plentiful but suffers from noise in location and variable coverage of regions. This makes it difficult to differentiate between noise and sparsely covered regions when increasing coverage and reducing noise. Due to the asynchronous, variable sampling rate, and often under-sampled nature of the data, our MSVR approach can better handle inherent GPS errors, reconstruct road shapes more accurately, and better deal with variable GPS data density in empirical environments. We evaluated our method for map inference by comparing to Open Street Map maps as ground truth. We use the F-Measure, Precision, and Recall metrics to evaluate our method on Tsinghua University’s Beijing Taxi Dataset and Shanghai Jiao Tong University’s SUVnet Dataset. On these datasets, we obtained a mean<?brk?> F-Measure, Precision, and Recall of 0.7212, 0.9165, and 0.6021, respectively, outperforming a well-known method based on Kernel Density Estimation in terms of these evaluation metrics.

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modelling and Simulation,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AFES: An Advanced Forensic Evidence System;2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW);2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3