Affiliation:
1. PNC, Pittsburgh, Pennsylvania
2. General Motors, Warren, Michigan
3. Carnegie Mellon University - Africa, Kigali, Rwanda
Abstract
The amount of GPS data that can be collected is increasing tremendously, thanks to the increased popularity of Global Position System (GPS) devices (e.g., smartphones). This article aims to develop novel methods of converting crowd-sourced GPS traces into road topology maps. We explore map inference using a three-stage approach, which incorporates a novel Multi-source Variable Rate (MSVR) signal reconstruction mechanism. Unlike conventional map inference methods based on map graph theory, our approach, to the best of our knowledge, is the first use of estimation theory for map inference. In particular, our approach addresses the unique challenges of vehicular GPS data. This data is plentiful but suffers from noise in location and variable coverage of regions. This makes it difficult to differentiate between noise and sparsely covered regions when increasing coverage and reducing noise. Due to the asynchronous, variable sampling rate, and often under-sampled nature of the data, our MSVR approach can better handle inherent GPS errors, reconstruct road shapes more accurately, and better deal with variable GPS data density in empirical environments.
We evaluated our method for map inference by comparing to Open Street Map maps as ground truth. We use the F-Measure, Precision, and Recall metrics to evaluate our method on Tsinghua University’s Beijing Taxi Dataset and Shanghai Jiao Tong University’s SUVnet Dataset. On these datasets, we obtained a mean<?brk?> F-Measure, Precision, and Recall of 0.7212, 0.9165, and 0.6021, respectively, outperforming a well-known method based on Kernel Density Estimation in terms of these evaluation metrics.
Publisher
Association for Computing Machinery (ACM)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modelling and Simulation,Information Systems,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AFES: An Advanced Forensic Evidence System;2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW);2021-10