An Efficient Multidimensional Big Data Fusion Approach in Machine-to-Machine Communication

Author:

Ahmad Awais1,Paul Anand1ORCID,Rathore Mazhar1,Chang Hangbae2

Affiliation:

1. Kyungpook National University, Korea

2. Chung-Ang University, Korea

Abstract

Machine-to-Machine communication (M2M) is nowadays increasingly becoming a world-wide network of interconnected devices uniquely addressable, via standard communication protocols. The prevalence of M2M is bound to generate a massive volume of heterogeneous, multisource, dynamic, and sparse data, which leads a system towards major computational challenges, such as, analysis, aggregation, and storage. Moreover, a critical problem arises to extract the useful information in an efficient manner from the massive volume of data. Hence, to govern an adequate quality of the analysis, diverse and capacious data needs to be aggregated and fused. Therefore, it is imperative to enhance the computational efficiency for fusing and analyzing the massive volume of data. Therefore, to address these issues, this article proposes an efficient, multidimensional, big data analytical architecture based on the fusion model. The basic concept implicates the division of magnitudes (attributes), i.e., big datasets with complex magnitudes can be altered into smaller data subsets using five levels of the fusion model that can be easily processed by the Hadoop Processing Server, resulting in formalizing the problem of feature extraction applications using earth observatory system, social networking, or networking applications. Moreover, a four-layered network architecture is also proposed that fulfills the basic requirements of the analytical architecture. The feasibility and efficiency of the proposed algorithms used in the fusion model are implemented on Hadoop single-node setup on UBUNTU 14.04 LTS core i5 machine with 3.2GHz processor and 4GB memory. The results show that the proposed system architecture efficiently extracts various features (such as land and sea) from the massive volume of satellite data.

Funder

Institute for Information & communications Technology Promotion, Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3