An Intelligent Approach Based on Cleaning up of Inutile Contents for Extremism Detection and Classification in Social Networks

Author:

Berhoum Adel1ORCID,Meftah Mohammed Charaf Eddine1ORCID,Laouid Abdelkader1ORCID,Hammoudeh Mohammad2ORCID

Affiliation:

1. LIAP Laboratory, University of El Oued, EL Oued, Algeria

2. King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

Abstract

Extremism is a growing threat worldwide that presents a significant danger to public safety and national security. Social networks provide extremists with spaces to spread their ideas through commentaries or tweets, often in Asian English. In this paper, we propose an intelligent approach that cleans the text’s content, analyzes its sentiment, and extracts its features after converting it to digital data for machine learning treatments. We apply 16 intelligent machine learning classifiers for extremism detection and classification. The proposed artificial intelligence methods for Asian English language data are used to extract the essential features from the text. Our evaluation of the proposed model with an extremism dataset proves its effectiveness compared to the standard classification models based on various performance metrics. The proposed model achieves 93,6% accuracy for extremism detection and 97,0% for extremism classification.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference42 articles.

1. BS ISO 5725-1. 1994. Accuracy (Trueness and precision) of measurement methods and results - Part 1: General principles and definitions. 1.

2. Data Mining

3. Detecting Violent Radical Accounts on Twitter

4. S. Agarwal and A. Sureka. 2015. Using a KNN and SVM-based One-class Classifier to Detect Online Radicalization on Twitter. In International Conference on Distributed Computing and Internet Technology. 431–442.

5. T. Alsbouí Mohammad Hammoudeh Zuhair Bandar and Andy Nisbet. 2011. An overview and classification of approaches to information extraction in wireless sensor networks.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3