A foundation for representing and querying moving objects

Author:

Güting Ralf Hartmut1,Böhlen Michael H.2,Erwig Martin1,Jensen Christian S.2,Lorentzos Nikos A.3,Schneider Markus1,Vazirgiannis Michalis4

Affiliation:

1. FernUniv. Hagen

2. Aalborg Univ.

3. Agricultural Univ. of Athens

4. Athens Univ. of Economics and Business

Abstract

Spatio-temporal databases deal with geometries changing over time. The goal of our work is to provide a DBMS data model and query language capable of handling such time-dependent geometries, including those changing continuously that describe moving objects . Two fundamental abstractions are moving point and moving region , describing objects for which only the time-dependent position, or position and extent, respectively, are of interest. We propose to present such time-dependent geometries as attribute data types with suitable operations, that is, to provide an abstract data type extension to a DBMS data model and query language. This paper presents a design of such a system of abstract data types. It turns out that besides the main types of interest, moving point and moving region, a relatively large number of auxiliary data types are needed. For example, one needs a line type to represent the projection of a moving point into the plane, or a “moving real” to represent the time-dependent distance of two points. It then becomes crucial to achieve (i) orthogonality in the design of the system, i.e., type constructors can be applied unifomly; (ii) genericity and consistency of operations, i.e., operations range over as many types as possible and behave consistently; and (iii) closure and consistency between structure and operations of nontemporal and related temporal types. Satisfying these goal leads to a simple and expressive system of abstract data types that may be integrated into a query language to yield a powerful language for querying spatio-temporal data, including moving objects. The paper formally defines the types and operations, offers detailed insight into the considerations that went into the design, and exemplifies the use of the abstract data types using SQL. The paper offers a precise and conceptually clean foundation for implementing a spatio-temporal DBMS extension.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference36 articles.

Cited by 411 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobility Data Science: Perspectives and Challenges;ACM Transactions on Spatial Algorithms and Systems;2024-06-30

2. Querying Mobile Pollution Data using MobilityDB;2024 25th IEEE International Conference on Mobile Data Management (MDM);2024-06-24

3. A Data Model and Predicate Logic for Trajectory Data;Lecture Notes in Computer Science;2024

4. A Data Model and Operations for Higher-Dimensional Moving Objects in Databases;Proceedings of the 1st ACM SIGSPATIAL International Workshop on Methods for Enriched Mobility Data: Emerging issues and Ethical perspectives 2023;2023-11-13

5. A Query Optimizer for Range Queries over Multi-Attribute Trajectories;ACM Transactions on Intelligent Systems and Technology;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3